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Pulse and differential pulse polarograms of redox reactions complicated by reactant adsorp-
tion with and without lateral attractions in the monolayer are analysed theoretically by us-
ing a stationary spherical diffusion model. The continuous shift of the post-peak potential
to lower values and the decrease in its half-peak width with increasing bulk concentration
of reactant indicate attractions between adsorbed ions or molecules.
Keywords: Pulse polarography; Differential pulse polarography; Stationary spherical diffu-
sion model; Adsorption; Static mercury drop electrode; PbBr2.

The dc polarogram of a reversible redox reaction complicated by reactant
adsorption on the surface of static mercury drop electrode often consists of
a main wave and a post-wave separated by a minimum1–3. This phenome-
non was observed in experiments with lead ions in bromide medium1. It is
caused by the adsorption of neutral complex PbBr2 followed by the surface
complexation mechanism: x PbBr2 + (Br–)ads (PbBr2)xBr–)ads, where x ≤ 5
(ref.2). The minimum separating diffusion and adsorption waves was ana-
lysed for Langmuir and Frumkin isotherms3. It was shown that the mini-
mum followed by a steep post-wave is the indication of strong lateral
attractions in the adsorbed layer. In the present communication, the influ-
ence of attractions on pulse and differential pulse polarograms of the sur-
face redox reaction is investigated. The sensitivity of these two techniques
to adsorbed reactants is well known4–10.
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THEORETICAL

A reversible redox reaction complicated by adsorption of reactant on the
surface of the static mercury drop electrode is considered.

(Ox)ads Ox + n e Red . (1)

The mass transfer is described by the spherical diffusion model:

∂ ∂ ∂ ∂( ) / ( ) / ,rc t D rc rox ox= 2 2 (2)

∂ ∂ ∂ ∂( ) / ( ) / ,rc t D rc rred red= 2 2 (3)

t r r c c c= ≥ = = =0 0 00, : , , ,ox ox red ox
* Γ (4)

t r c c c> → ∝ → →0 0, : ,ox ox red
* (5)

r r c cr r r r= == =0 0 0
: ( ) ( ) exp( )ox red ϕ (6)

ϕ = nF(E – E0)/RT (7)

D c r I nFS tr r( / ) / /∂ ∂ox oxd d= = +
0

Γ (8)

D c r I nFSr r( / ) /∂ ∂red = = −
0

(9)

β( θ θ θc ar rox ) exp( ) / ( ) ,= = −
0

1 (10)
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where: θ = Γox / Γmax and Γmax is the maximum surface concentration of the
adsorbed reactant, r and t are space and time coordinates, r0 is the radius of
the static mercury drop electrode, cox and cred are concentrations of the re-
actant and the product, respectively, cox

* is the bulk concentration of the re-
actant, ( )c r rox = 0

and ( )c r rred = 0
are concentrations of the reactant and product

at the electrode surface, respectively, D is a diffusion coefficient, E is
electrode potential, E0 is the standard potential of the simple redox reaction
Ox + ne Red, F is the Faraday constant, I is the current, n is the number
of electrons, R is the gas constant, S is the electrode surface area, β is ad-
sorption constant of the reactant, Γox is surface concentration of the ad-
sorbed reactant and a is Frumkin coefficient of the reactant. A negative
value of the Frumkin coefficient (a < 0) corresponds to intermolecular at-
traction between adsorbed molecules.

Equations (2) and (3) can be solved by the substitution Ψ = cox + cred
(ref.1). The application of Laplace transforms and the modified Nicholson
and Olmstead methods yields a system of recursive formulae for the degree
of coverage of electrode surface

(θm – 1) (θm – ωm) = y θm exp (aθm) , (11)

where θm is the surface coverage at t = md and d is the time increment, m =
1, 2 ... M, M = td/d and td is a mercury drop life-time. The meanings of the
other symbols are the following

ω π γ θm j m j m j
j

m

b MQ Q Q Q= − −− −
− + −

=

−

∑2
1

1
1

1
1

1

1

( ) ( ) , (12)

y b MQ z= + − −2
1

11[ exp( )]( ) ,ϕ π (13)

b t D r= ( ) / ,/π d
1 2

0 (14)

z r= βΓmax / ,0 (15)

Collect. Czech. Chem. Commun. (Vol. 66) (2001)

Pulse Polarography 425

→←



γ = Γmax ox
*/ ,c r0 (16)

Q b k M b k Mk = − − −

−

− −exp[ ( )( ) ] [ ( ) ( ) ]

exp[

/ /2 1 1 2 1 21 1π πerfc

b k M bk M2 1 1 2( ) ] ( ) ]./π π− −erfc[ 1/2
(17)

The integral equations for the currents immediately before and at the end
of the pulse can be obtained by solving Eq. (3)

Φi r r i

j

i

M b c c

M c

= + +

+

=

=

−

∑

{( )[( ) / ]

[(

/

/

2

2

1 2

1 2

1

1

0red ox

re

*

d ox
*) / ] ( )}( ) / ( ) ,/ /

r r j i j i jc P P M M M b= − + −
−− − +

0 1 0
1 2 1 2 1

(18)

where either i = M0, or i = M, tP = (M – M0)d and tP is a pulse duration time.
The meanings of other symbols are the following

[( ) / ] ( ) exp( )c c z ar r m m m mred ox
*

=
− −= − − +

0
1 1 1θ γ θ ϕ θ , (19)

Φ = +− − −I t nFSc D b( ) ( ) ( )/ /*π p ox
1 2 1 1 2 11 , (20)

P k kk = − −1 2 1 21/ /( ) . (21)

The pulse and differential pulse polarography were simulated using M =
500 and M0 = 475 which ensured optimum speed and precision of the simu-
lation3.

RESULTS AND DISCUSSION

The parameter γ is inversely proportional to the relative bulk concentration
of the reactant. It determines the relationship between the main peak and
the post-peak in differential pulse polarography (DPP) as can be seen in
Fig. 1. The main peak is well developed if γ < 0.06 (see curves 1–3). If Γmax =
5 · 10–10 mol/cm2 and r0 = 0.03 cm, this value of γ corresponds to cox

* >
3 · 10–4 mol/l. This figure also shows that the dimensionless post-peak is
twice higher than the main peak (cf. curves 1 and 7). Hence, the sensitivity
of DPP, i.e. the gradient ∂I/∂cox

* , is higher for the adsorbed reactant (γ > 1)
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than for the dissolved reactant (γ < 10–2). Besides, the half-peak widths of
the main peak and the post-peak are 100 and 70 mV, respectively, both for
the pulse amplitude of 50 mV. In the absence of interactions between ad-
sorbed molecules (a = 0), the separation between two peaks depends lin-
early on logarithm of the dimensionless adsorption constant

EP,1 – EP,2 = 0.058(1 + log z) . (22)

This is shown in Fig. 2. However, for very weak adsorption (z = 1), these two
peaks are unresolved. Figure 3 shows that in this case the variation of the
reactant bulk concentration causes the shift of the peak potential for 60 mV
(see also curve 1 in Fig. 4). If r0 = 0.03 cm, the value z = 1 corresponds to the
product βΓmax = 3 · 10–2 cm. This product is the adsorption constant of a
linear isotherm. For many surface-active ions and organic substances the
value of this constant is between 10–2 and 1 cm (refs2,4,7). Hence, the
adsorption characterized by z = 10 and a = 0 is moderately strong (see Fig. 1).
Curve 3 in Fig. 4 shows the relationship between DPP peak potentials and
the reactant concentration for this case. A small shift of the post-peak in
the positive direction appears in the range of the smallest relative concen-
trations. A similar shift can be observed on curve 1 of this figure. With the
development of the main peak at +0.025 V vs E0, the post-peak shifts nega-
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FIG. 1
Differential pulse polarograms of the redox reaction (Eq. (1)): ∆E = 50 mV, n = 1, tP/td = 0.05,
b = 0.1, a = 0, z = 10 and γ = 0.01 (1), 0.03 (2), 0.05 (3), 0.06 (4), 0.07 (5), 0.1 (6) and 1 (7)
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tively. For this reason Eq. (22) applies only to polarograms with two ap-
proximately equal peaks, such as those shown in Fig. 2. In all other cases,
the difference is by 10–40 mV bigger, depending on 1/γ.

Under the influence of lateral attractions in the adsorbed layer, the sepa-
ration between the diffusion and adsorption peaks increases, while the
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FIG. 3
Differential pulse polarograms of the redox reaction (Eq. (1)): z = 1 and γ = 0.01 (1), 0.03 (2),
0.05 (3), 0.06 (4), 0.07 (5), 0.1 (6) and 1 (7). For other parameters, see Fig. 1

FIG. 2
Differential pulse polarograms of the redox reaction (Eq. (1)): γ = 0.05 and z = 1 (1), 10 (2),
100 (3) and 1 000 (4). For other parameters, see Fig. 1
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half-peak width of the post-peak decreases to 60 mV for a = –2, 40 mV for a =
–3 and 20 mV for a = –4. This can be seen in Fig. 5. The difference between
peak potentials is directly proportional to the Frumkin coefficient a, with
the slope ∂(EP,1 – EP,2)/∂a = –15 mV (note that a < 0). The influences of the

Collect. Czech. Chem. Commun. (Vol. 66) (2001)

Pulse Polarography 429

FIG. 5
Differential pulse polarograms of the redox reaction (Eq. (1)): z = 1, γ = 0.05 and a = 0 (1),
–1 (2), –2 (3), –3 (4) and –4 (5). For other parameters, see Fig. 1

FIG. 4
Dependence of peak potentials of differential pulse polarograms of the redox reaction (Eq.
(1)) on the relative bulk concentration of the reactant: z = 1, a = 0 (1); z = 1, a = –3 (2); z =
10, a = 0 (3); z = 10, a = –2 (4). For other parameters, see Fig. 1
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Frumkin coefficient and the dimensionless adsorption constant are simply
additive

EP,1 – EP,2 = 0.058(1 + log z) – 0.015a . (23)

Equation (23) applies under the same conditions as Eq. (22).
Figure 6 shows that the attraction forces influence DPP polarograms only

in the concentration range in which the main peak develops. Curve 7 is al-
most identical with curve 7 in Fig. 3. They appear at low surface coverage.
As the relative bulk concentration of the reactant increases, the post-peak
shifts in negative direction, its half-peak width decreases and a main peak
appears. Under these conditions, the electrode surface is fully covered by
the adsorbed reactant before application of the pulse and the post-peak cor-
responds to the reduction of condensed rectant monolayer. The peak po-
tentials of polarograms in Fig. 6 are plotted as curve 2 in Fig. 4. Curve 4 in
Fig. 4 shows peak potentials influenced by stronger adsorption, but weaker
attraction (z = 10, a = –2). Curves 2 and 4 are to be compared with curves 1
and 3, respectively. The differences among them are the most significant in
the range of the lowest concentrations (1/γ < 20), where the respective
curves diverge. Hence, the continuous shift of the post-peak in negative di-
rection, together with the decrease of the half-peak width below 70 mV, are
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FIG. 6
Differential pulse polarograms of the redox reaction (Eq. (1)): z = 1, a = –3 and γ = 0.01 (1),
0.03 (2), 0.05 (3), 0.06 (4), 0.07 (5), 0.1 (6) and 1 (7). For other parameters, see Fig. 1
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the indications of lateral attractions in the adsorbed layer. The effect is
more pronounced if the adsorption constant is lower, but the attraction
forces are stronger.
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FIG. 8
Pulse polarograms of the redox reaction (Eq. (1)): z = 1, a = –3 and γ = 0.01 (1), 0.03 (2),
0.05 (3), 0.06 (4), 0.07 (5), 0.1 (6) and 1 (7). For other parameters, see Fig. 7

FIG. 7
Pulse polarograms of the redox reaction (Eq. (1)): tP/td = 0.05, b = 0.1, n = 1, z = 1, γ = 0.05
and a = 0 (1), –1 (2), –2 (3), –3 (4) and –4 (5)
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Figure 7 shows the influence of the Frumkin parameter a on the pulse
polarogram of the redox reaction (1). The separation between the half-wave
potential of diffusion wave and the potential of adsorption peak depends
linearly on the interaction parameter and the logarithm of dimensionless
adsorption constant

E1/2 – EP = 0.110 + 0.058 log z – 0.012a . (24)

The half-peak width decreases from 100 mV for a = 0 to 80 mV (a = –1), 60
mV (a = –2), 40 mV (a = –3) and 25 mV (a = –4). The dimensionless peak
current is independent of the adsorption constant, but increases with the
Frumkin parameter.

The dependence of pulse polarograms on the concentration parameter γ
is shown in Fig. 8. The development of the main wave is accompanied by
the shift of adsorption peak in negative direction, like in DPP. The relation-
ship between the peak potentials and the relative bulk concentration of the
reactant is presented as the curve 1 in Fig. 9. Curves 2 and 3 of this figure
show the same relations corresponding to the stronger adsorption without
and with attractions, respectively. The similarity of Figs 4 and 9 shows that
the manifestations of attraction are the same in both pulse and differential
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FIG. 9
Dependence of peak potentials of pulse polarograms of the redox reaction (Eq. (1)) on the
relative bulk concentration of the reactant: z = 1, a = –3 (1); z = 10, a = 0 (2); z = 10, a = –2
(3). For other parameters, see Fig. 7
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pulse polarography. It is very probable that many polarograms consisting of
a clearly separated main peak and post-peak are caused by weak adsorption
enhanced by lateral attractions in the monolayer, rather than by strong ad-
sorption alone.
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